OKLAHOMASTATE UNIVERSITY SCHOOLOF ELECTRICALAND COMPUTERENGINEERING

ECEN 4413/MAE 4053
Automatic Control Systems
Spring 2006

Midterm Exam \#1

Choose any four out of five problems.
Please specify which four listed below to be graded:

1) \qquad ; 2) \qquad ; 3) \qquad ; 4) \qquad ;

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Using block diagram reduction technique to rearrange the following block diagram into the equivalent H and G configurations of the feedback control system shown below. Clearly identify the transfer functions for $G_{p}(s), H_{e q}(s)$ and $G_{e q}(s)$.

Problem 2:

Find the transfer functions $Y_{7}(s) / Y_{1}(s)$ and $Y_{2}(s) / Y_{1}(s)$ of the SFG shown below.

Problem 3:

The block diagram of a feedback control system is shown below
a) Apply the SFG gain formula directly to the block diagram to find the transfer functions $\left.\frac{Y(s)}{R(s)}\right|_{N=0}$ and $\left.\frac{Y(s)}{N(s)}\right|_{R=0}$.
Express $Y(s)$ in terms of $R(s)$ and $N(s)$ when both inputs are applied simultaneously.
b) Find the desired relation among the transfer functions $G_{1}(s), G_{2}(s), G_{3}(s), G_{4}(s)$, $H_{1}(s)$ and $H_{2}(s)$ so that the output $Y(s)$ is not affected by the disturbance signal $N(s)$ at all.

Problem 4:

The differential equation of a linear system is
$\frac{d^{4} y(t)}{d t^{4}}+4 \frac{d^{3} y(t)}{d t^{3}}+3 \frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+y(t)=r(t)$
where $y(t)$ is the output and $r(t)$ is the input.
a) Draw a state diagram for the system.
b) Write the state equation from the state diagram. Define the state variables from right to left in ascending order.
c) Find the transfer function $Y(s) / R(s)$.
d) Perform a partial fraction expansion of $Y(s) / R(s)$ and find the output $y(t)$ for $t \geq 0$ when $r(t)$ is fed with unit-step function. Find the final value of $y(t)$.

Problem 5:

Write the equation of motion for the linear translational system shown below. Draw the state diagram using a minimum number of integrators. Write the state equation from the state diagram. Find the transfer functions $Y_{1}(s) / F(s)$ and $Y_{2}(s) / F(s)$. Set $M g=0$ for the transfer function.

